Теорема о кинетической энергии тела. Теорема о кинетической энергии

Скалярная величина Т, равная сумме кинетических энергий всех точек системы, называется кинетической энергией системы.

Кинетическая энергия является характеристикой поступательного и вращательного движения системы. На ее изменение влияет действие внешних сил и так как она является скаляром, то не зависит от направления движения частей системы.

Найдем кинетическую энергию при различных случаях движения:

1. Поступательное движение

Скорости всех точек системы равны скорости центра масс . Тогда

Кинетическая энергия системы при поступательном движении равна половине произведения массы системы на квадрат скорости центра масс.

2. Вращательное движение (рис. 77)

Скорость любой точки тела: . Тогда

или используя формулу (15.3.1):

Кинетическая энергия тела при вращении равна половине произведения момента инерции тела относительно оси вращения на квадрат его угловой скорости.

3. Плоскопараллельное движение

При данном движении кинетическая энергия складывается из энергии поступательного и вращательных движений

Общий случай движения дает формулу, для вычисления кинетической энергии, аналогичную последней.

Определение работы и мощности мы сделали в параграфе 3 главы 14. Здесь же мы рассмотрим примеры вычисления работы и мощности сил действующих на механическую систему.

1. Работа сил тяжести . Пусть , координаты начального и конечного положения точки k тела. Работа силы тяжести действующих на эту частицу веса будет . Тогда полная работа:

где Р - вес системы материальных точек, - вертикальное перемещение центра тяжести С.

2. Работа сил, приложенных к вращающемуся телу .

Согласно соотношению (14.3.1) можно записать , но ds согласно рисунку 74, в силу бесконечной малости можно представить в виде - бесконечно малый угол поворота тела. Тогда

Величина называется вращающим моментом.

Формулу (19.1.6) перепишем как

Элементарная работа равна произведению вращательного момента на элементарный поворот .

При повороте на конечный угол имеем:

Если вращательный момент постоянен , то

а мощность определим из соотношения (14.3.5)

как произведение вращающего момента на угловую скорость тела.

Теорема об изменении кинетической энергии доказанная для точки (§ 14.4) будет справедлива для любой точки системы

Составляя такие уравнения для всех точек системы и складывая их почленно получаем:

или, согласно (19.1.1):

что является выражением теоремы о кинетической энергии системы в дифференциальной форме.

Проинтегрировав (19.2.2) получаем:

Теорему об изменении кинетической энергии в конечном виде: изменение кинетической энергии системы при некотором ее конечном перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил.

Подчеркнем, что внутренние силы не исключаются. Для неизменяемой системы сумма работ всех внутренних сил равна нулю и

Если связи, наложенные на систему, не изменяются со временем, то силы, как внешние так и внутренние, можно разделить на активные и реакции связей, и уравнение (19.2.2) теперь можно записать:

В динамике вводится такое понятие как "идеальная" механическая система. Это такая система, наличие связей у которой не влияет на изменение кинетической энергии, то есть

Такие связи, не изменяющиеся со временем и сумма работ которых на элементарном перемещении равна нулю, называются идеальными, и уравнение (19.2.5) запишется:

Потенциальной энергией материальной точки в данном положении М называется скалярная величина П, равная той работе, которую произведут силы поля при перемещении точки из положения М в нулевое

П = А (мо) (19.3.1)

Потенциальная энергия зависит от положения точки М, то есть от ее координат

П = П(х,у,z) (19.3.2)

Поясним здесь, что силовым полем называется часть пространственного объема, в каждой точке которого на частицу действует определенная по модулю и направлению сила, зависящая от положения частицы, то есть от координат х, у, z. Например, поле тяготения Земли.

Функция U от координат, дифференциал которой равен работе, называется силовой функцией . Силовое поле, для которого существует силовая функция, называется потенциальным силовым полем , а силы действующие в этом поле, - потенциальными силами .

Пусть нулевые точки для двух силовых функций П(х,у,z) и U(x,y,z) совпадают.

По формуле (14.3.5) получаем , т.е. dA = dU(x,y,z) и

где U - значение силовой функции в точке М. Отсюда

П(x,y,z) = -U(x,y,z) (19.3.5)

Потенциальная энергия в любой точке силового поля равна значению силовой функции в этой точке, взятому с обратным знаком.

То есть, при рассмотрении свойств силового поля вместо силовой функции можно рассматривать потенциальную энергию и, в частности, уравнение (19.3.3) перепишется как

Работа потенциальной силы равна разности значений потенциальной энергии движущейся точки в начальном и конечном положении.

В частности работа силы тяжести:

Пусть все силы, действующие на систему, будут потенциальными. Тогда для каждой точки k системы работа равна

Тогда для всех сил, как внешних, так и внутренних будет

где - потенциальная энергия всей системы.

Подставляем эти суммы в выражение для кинетической энергии (19.2.3):

или окончательно:

При движении под действием потенциальных сил сумма кинетической и потенциальной энергии системы в каждом ее положении остается величиной постоянной. Это закон сохранения механической энергии.

Груз массой 1 кг совершает свободные колебания согласно закону х = 0,1sinl0t. Коэффициент жесткости пружины с = 100 Н/м. Определить полную механическую энергию груза при х = 0,05м, если при х= 0 потенциальная энергия равна нулю . (0,5)

Груз массой m = 4 кг, опускаясь вниз, приводит с помощью нити во вращение цилиндр радиуса R = 0,4 м. Момент инерции цилиндра относительно оси вращения I = 0,2 . Определить кинетическую энергию системы тел в момент времени, когда скорость груза v = 2м/с . (10,5)

Теорема о кинетической энергии точки в дифференциальной форме

Умножая скалярно обе части уравнения движения материальной точки на элементарное перемещение точки получим

или, так как , то

Скалярная величина или половина произведения массы точки на квадрат ее скорости называется кинетической энергией точки или живой силой точки.

Последнее равенство составляет содержание теоремы о кинетической энергии точки в дифференциальной форме, которая гласит: дифференциал кинетической энергии точки равен элеменарной работе, действующей на точку силы.

Физический смысл теоремы о кинетической энергии заключается в том, что работа, производимая действующей на точку силой, накапливается в ней как кинетическая энергия движения.

Теорема о кинетической энергии точки в интегральной форме

Пусть точка переместилась из положения Л в положение В, пройдя по своей траектории конечную дугу АВ (рис. 113). Интегрируя в пределах от Л до Б равенство:

где соответственно скорости точки в положениях А и В.

Последнее равенство составляет содержание теоремы о кинетической энергии точки в интегральной форме, которая гласит: изменение кинетической энергии точки за некоторый промежуток времени равно работе, совершенной за то же время действующей на нее силой.

Полученная теорема справедлива при движении точки под действием любой силы. Однако, как указывалось, для вычисления полной работы силы нужно в общем случае знать уравнения движения точки.

Поэтому теорема о кинетической энергии, вообще говоря, не дает первого интеграла уравнений движения.

Интеграл энергии

Теорема о кинетической энергии дает первый интеграл урав нений движения точки, если полная работа силы может быть определена, не прибегая к уравнениям движения. Последнее, возможно, как ранее указывалось, если сила, действующая на точку, принадлежит к силовому полю. В этом случае достаточно знать только траекторию точки. Пусть траектория точки будет некоторая кривая, тогда координаты ее точек можно выразить через дугу траектории, и, следовательно, сила зависящая от координат точки, может быть выражена через

и теорема о кинетической энергии дает первый интеграл вида

где - дуги траектории, соответствующие точкам А и - проекция силы на касательную к траектории (рис. 113).

Потенциальная энергия и закон сохранения механической энергии точки

Особый интерес представляет движение точки в потенциальном поле, так как теорема о кинетической энергии дает при этом весьма важный интеграл уравнений движения.

В потенциальном поле полная работа силы равна разности значений силовой функции в конце и в начале пути:

Следовательно, теорема о кинетической энергии в этом случае записывается в виде:

Силовая функция, взятая с обратным знаком называется потенциальной энергией точки и обозначается буквой П:

Потенциальная энергия, так же как и силовая функция, задается с точностью до произвольной постоянной, значение которой определяется выбором нулевой поверхности уровня. Сумма кинетической и потенциальной энергии точки называется полной механической энергией точки.

Теорема о кинетической энергии точки, если сила принадлежит к потенциальному полю, записывается в виде:

где - значения потенциальной энергии, соответствующие точкам А и В. Полученное уравнение составляет содержание закона сохранения механической энергии для точки, который гласит: при движении в потенциальном поле сумма кинетической и потенциальной энергии точки остается постоянной.

Так как закон сохранения механической энергии справедлив только для сил, принадлежащих потенциальным полям, то силы такого поля называются консервативными (от латинского глагола conservare - сохранять), чем подчеркивается выполнение в этом случае сформулированного закона. Заметим, что если понятие кинетической энергии имеет в своем определении известные физические основания, то понятие потенциальной энергии этого лишено. Понятие потенциальной энергии в известном смысле является фиктивной величиной, которая определяется так, что изменения ее значения в точности соответствуют изменениям кинетической энергии. Введение этой величины, связанной с движением, помогает описанию движения и благодаря этому играет существенную роль в так называемом энергетическом описании движения, разрабатываемый аналитической механикой. В последнем и заключается смысл введения этой величины.

Начнем с определения. Работа А силы F при перемещении х тела, к которому она приложена, определяется как скалярное произведение векторов F и х .

А= F ·х= Fxcosα . (2.9.1)

Где α – угол между направлениями силы и перемещения.

Сейчас нам пригодится выражение (1.6 а), которое получено при равноускоренном движении. Но вывод мы сделаем универсальный, который и называется теоремой о кинетической энергии. Итак, перепишем равенство (1.6 а)

a · x =(V 2 –V 0 2)/2.

Умножим обе части равенства на массу частицы, получим

Fx =m(V 2 –V 0 2)/2.

Окончательно

А= m V 2 /2 – m V 0 2 /2. (2.9.1)

Величину Е = m V 2 /2 называют кинетической энергией частицы.

Вы привыкли, что в геометрии теоремы имеют свою устную формулировку. Чтобы не отстать от этой традиции, представим теорему о кинетической энергии в виде текста.

Изменение кинетической энергии тела равно работе всех сил, действующих на него.

Данная теорема носит универсальный характер, т. е. справедлива для любого вида движения. Однако точное её доказательство связано с применением интегрального исчисления. Поэтому мы его опускаем.

Рассмотрим пример движения тела в поле тяжести. Работа силы тяжести не зависит от вида траектории, соединяющей начальную и конечную точки, а определяется только разностью высот в начальном и конечном положениях:

А=mg(h 1 –h 2). (2.9.2)

Примем какую-нибудь точку поля тяжести за начало отсчета и будем рассматривать работу, совершаемую силой тяжести при перемещении частицы в эту точку из другой произвольной точки Р , находящейся на высоте h . Эта работа равна mgh и называется потенциальной энергией Е п частицы в точке Р :

Е п = mgh (2.9.3)

Теперь преобразуем равенство (2.9.1), механическая теорема о кинетической энергии примет вид

А= m V 2 /2 – m V 0 2 /2= Е п1 – Е п2 . (2.9.4)

m V 2 /2+ Е п2 = m V 0 2 /2+ Е п1 .

В этом равенстве в левой части стоит сумма кинетической и потенциальной энергии в конечной точке траектории, а в правой – в начальной.

Эту сумму называют полной механической энергией. Будем обозначать ее Е .

Е = Е к + Е п.

Мы пришли к закону сохранения полной энергии: в замкнутой системе полная энергия сохраняется.

Однако следует сделать одно замечание. Пока мы рассматривали пример так называемых консервативных сил . Эти силы зависят только от положения в пространстве. А работа, совершаемая такими силами при перемещении тела из одного положения в другое, зависит только от этих двух положений и не зависит от пути. Работа, совершаемая консервативной силой, является механически обратимой, т. е. меняет свой знак при возврате тела в исходное положение. Сила тяжести является консервативной силой. В дальнейшем мы познакомимся с другими видами консервативных сил, например, с силой электростатического взаимодействия.

Но в природе бывают и неконсервативные силы . Например, сила трения скольжения. Чем больше путь частицы, тем большую работу совершает сила трения скольжения, действующая на эту частицу. Кроме того, работа силы трения скольжения всегда отрицательна, т. е. «вернуть» энергию такая сила не может.

Для замкнутых систем полная энергия, конечно, сохраняется. Но для большинства задач механики более важным является частный случай закона сохранения энергии, а именно закон сохранения полной механической энергии. Вот его формулировка.

Если на тело действуют только консервативные силы, то его полная механическая энергия, определяемая как сумма кинетической и потенциальной энергий, сохраняется .

В дальнейшем нам понадобятся ещё два важных равенства. Как всегда, вывод заменим простой демонстрацией частного случая поля тяжести. Но вид этих равенств будет справедлив для любых консервативных сил.

Приведем равенство (2.9.4) к виду

А= F x = Е п1 – Е п2 = –( Е п.кон – Е п.нач)= – ∆U.

Здесь мы рассмотрели работу А при перемещении тела на расстояние ∆x . Величину ∆U, равную разности конечной и начальной потенциальной энергии, называют изменением потенциальной энергии. А полученное равенство заслуживает отдельной строчки и специального номера. Поспешим его присвоить ему:

А= – ∆U (2.9.5)

Отсюда же вытекает математическая связь между силой и потенциальной энергией:

F = – ∆U/∆x (2.9.6)

В общем случае, не связанном с полем тяжести, равенство (2.9.6) представляет собой простейшее дифференциальное уравнение

F = – dU / dx .

Последний пример рассмотрим без доказательства. Гравитационная сила описывается законом всемирного тяготения F (r )= GmM / r 2 и является консервативной. Выражение для потенциальной энергии гравитационного поля имеет вид:

U (r )= – GmM / r .

Автор : Разберем простой случай. На тело массой m, находящееся на горизонтальной плоскости, действует в течение промежутка времени Т горизонтальная сила F . Трение отсутствует. Чему равна работа силы F ?

Студент : За время Т тело переместится на расстояние S=а Т 2 /2, где а =F /m. Следовательно, искомая работа есть А =F S=F 2 T 2 /(2m).

Автор : Все правильно, если считать, что тело покоилось до того, как на него начала действовать сила. Несколько усложним задачу. Пусть до начала действия силы тело двигалось прямолинейно и равномерно с некоторой скоростью V 0 , сонаправленной с внешней силой. Чему теперь равна работа за время Т ?

Студент : Для расчета перемещения возьму более общую формулу S= V 0 T + а Т 2 /2, для работы получаю А =F (V 0 T + а Т 2 /2). Сравнивая с предыдущим результатом, вижу, что одна и та же сила за одинаковые промежутки времени производит разную работу.

Тело массой m скользит вниз по наклонной плоскости с углом наклона α. Коэффициент трения скольжения тела о плоскость k . На тело все время действует горизонтальная сила F . Чему равна работа этой силы при перемещении тела на расстояние S?

Студент : Произведем расстановку сил и найдем их равнодействующую. На тело действует внешняя сила F, а также силы тяжести, реакции опоры и трения.

Студент : Получается, что работа А= F Scos α и всё. Меня действительно подвела привычка каждый раз искать все силы, тем более что в задаче указана масса и коэффициент трения.

Студент : Работу силы F я уже вычислил: А 1 = F S cos α. Работа силы тяжести есть А 2 =mgSsin α. Работа силы трения … отрицательна, т. к. векторы силы и перемещения противоположно направлены: А 3 = – kmgScos α. Работа силы реакции N равна нулю, т. к. сила и перемещение перпендикулярны. Правда, я не очень понимаю смысла отрицательной работы?

Автор : Это означает, что работа данной силы уменьшает кинетическую энергию тела. Кстати. Давайте обсудим движение тела, изображенного на рис.2.9.1, с точки зрения закона сохранения энергии. Для начала найдите суммарную работу всех сил.

Студент : – А = А 1 + А 2 + А 3 = FScos α+ mgSsin α– kmgScos α.

По теореме о кинетической энергии разность кинетических энергий в конечном и начальном состояниях равна совершенной над телом работе:

Е к –Е н =А .

Студент : Может быть, это были другие уравнения, не относящиеся к данной задаче?

Автор : Но все уравнения должны давать одинаковый результат. Дело в том, что потенциальная энергия содержится в скрытом виде в выражении для полной работы. Действительно, вспомните А 2 =mgSsin α=mgh, где h – высота спуска тела. Получите, теперь из теоремы о кинетической энергии выражение закона сохранения энергии.

Студент : Так как mgh=U н – U к, где U н и U к соответственно начальная и конечная потенциальные энергии тела, то имеем:

mV н 2 /2 + U н + А 1 + А 3 = mV к 2 /2+ U к.

Студент : Это, по-моему, легко. Работа силы трения по модулю как раз и равна количеству теплоты Q . Поэтому Q = kmgScos α.

Студент : mV н 2 /2 + U н + А 1 – Q = mV к 2 /2+ U к.

Автор : Теперь несколько обобщим определение работы. Дело в том, что соотношение (2.9.1) верно только для случая действия постоянной силы. Хотя есть немало случаев, когда сила сама зависит от перемещения частицы. Приведите пример.

Студент : Первое, что приходит в голову, это растяжение пружины. По мере перемещения незакрепленного конца пружины сила, все увеличивается. Второй пример связан с маятником, который, как мы знаем, сложнее удержать при больших отклонениях от положения равновесия.

Автор : Хорошо. Давайте остановимся на примере с пружиной. Сила упругости идеальной пружины описывается законом Гука, в соответствии с которым при сжатии (или растяжении) пружины на величину х возникает сила, противоположно направленная смещению, линейно зависящая от х . Запишем закон Гука в виде равенства:

F = – kx (2.9.2)

Здесь k – коэффициент жесткости пружины, x – величина деформации пружины. Изобразите график зависимости F (x ).

Студент : Мой чертеж представлен на рисунке.

Рис.2.9.2

Левая половина графика соответствует сжатию пружины, а правая – растяжению.

Автор : Теперь вычислим работу силы F при перемещении от х =0 до х = S. Для этого существует общее правило. Если нам известна общая зависимость силы от смещения, то работа на участке от х 1 до х 2 есть площадь под кривой F (x ) на этом отрезке.

Студент : Значит, работа силы упругости при перемещении тела от х =0 до х =S отрицательна, а модуль её равен площади прямоугольного треугольника: А = kS 2 /2.

А = kх 2 /2. (2.9.3)

Эта работа превращается в потенциальную энергию деформированной пружины.

История.

Резерфорд демонстрировал слушателям распад радия. Экран то светился, то темнел.

– Теперь вы видите, сказал Резерфорд, что ничего не видно. А почему ничего не видно, вы сейчас увидите.

Вопросы и задания

1. Перечислите ситуации, встречающиеся в повседневной жизни, в которых участвуют неконсервативные силы.

2. Вы медленно поднимаете книгу со стола на высокую полку. Перечислите силы, действующие на книгу, и определите, какие из них являются консервативными, а какие нет.

3. Результирующая сила, действующая на частицу, консервативна и увеличивает её кинетическую энергию на 300 Дж . Каково при этом изменение а) потенциальной энергии частицы, б) её полной энергии?

4. Имеет ли физический смысл следующее утверждение: использование шестов из гибкого пластика в прыжках в высоту привело к росту результатов благодаря тому, что большая его гибкость дает дополнительную упругую энергию, преобразуемую в потенциальную энергию поля тяжести?

5. Имеется наклонная плоскость, один конец которой поднят на высоту Н . Тело массой М скатывается (без начальной скорости) из верхней точки. Зависит ли скорость этого тела у основания наклонной плоскости от угла, который она составляет с горизонтом, если а) трение отсутствует, б) трение имеется?

6. Почему мы все же утомляемся, когда сначала взбираемся на гору, а потом спускаемся с нее? Ведь полная работа в поле тяжести равна нулю.

7. Этот пример ещё жестче. Представьте, что Вы держите гантелю на вытянутой руке. Не бойтесь, она не очень тяжелая. Но все же рука устает. А механической работы никакой нет, т. к. нет движения. Куда расходуется энергия Ваших мышц?

8. Пружина массой m покоится в вертикальном положении на столе. Сможет ли пружина, подпрыгнув, оторваться от стола, после того как Вы сожмете её, надавив сверху, а затем отпустите? Объясните свой ответ, используя закон сохранения энергии.

9. Что происходит с потенциальной энергией, которую имела вода в верхней части водопада, когда вода достигнет его основания? А что случится с кинетической и полной энергией?

10. Опытные туристы предпочитают перешагивать через упавшее бревно, а не, наступив на него, спрыгивать с противоположной стороны. Объясните явление.

11. Два человека находятся на разных платформах, которые движутся относительно друг друга со скоростью V. Они наблюдают за бревном, которое тянут по шероховатой горизонтальной поверхности. Совпадают ли полученные этими людьми значения: а) кинетической энергии бревна; б) полной работы, совершаемой над телом; в) механической энергии, перешедшей в тепловую из-за наличия трения? Не противоречит ли ответ на вопрос в) ответам на вопросы а) и б)?

12. Откуда берется кинетическая энергия автомобиля при равномерном его ускорении из состояния покоя? Как связать возрастание кинетической энергии с наличием силы трения между шинами и шоссе?

13. Зимой Земля приближается к Солнцу на кратчайшее расстояние. Когда потенциальная энергия Земли наибольшая?

14 Может ли полная механическая энергия быть отрицательной? Приведите примеры.

15. В какой точке величина сила наибольшая? Для каждой из обозначенных цифрами точек укажите, в каком направлении действует сила. Какая точка соответствует положению равновесия?

Задачи

16. Пуля пробивает закрепленную доску при минимальной скорости 200 м/с . С какой скоростью должна лететь пуля для того, чтобы пробить эту доску, подвешенную на длинной нити? Масса пули 15г , масса доски 90г , пуля попадает точно в центр доски перпендикулярно её поверхности.

17. Деревянный шар массой М =1 кг висит на шнуре так, что расстояние от точки подвеса шнура до центра шара равно L = 1 м . В шар попадает горизонтально летящая со скоростью V 1 =400 м/с пуля массой m = 10 г , которая пробивает шар точно по диаметру и вылетает из него со скоростью V 2 =230 м/с . Определите угол максимального отклонения подвеса от вертикали. Сопротивлением воздуха и временем пробивания шара пулей пренебречь.

18. На плоскости, наклоненной к горизонту под углом α, лежат два тела массой m . Коэффициент трения между телами и плоскостью k >tg α. Телам придают одинаковые встречные скорости V . При каком максимальном начальном расстоянии L между телами они столкнутся?

19. Тележка скатывается по гладким рельсам, образующим вертикальную петлю радиуса R . С какой минимальной высоты H min должна скатиться тележка для того, чтобы она не покинула рельсов по всей их длине? Каково будет движение тележки, если она скатывается с высоты h , меньшей H min ?

20. Определите силу, действующую на вертикальную стенку со стороны падающей гантели, в тот момент, когда ось гантели составляет угол  с горизонтом. Гантель начинает свое движение из вертикального положения без начальной скорости. Масса каждого шарика гантели m.

21. На нити длиной 2h подвешен грузик массой m . На расстоянии h под точкой подвеса вбит гвоздь. Нить отклонили из положения равновесия на угол /2 и отпустили. На какую максимальную высоту поднимется грузик после прохождения положения равновесия?

22. Подставка массой M с полусферической выемкой радиуса R стоит на гладкой горизонтальной плоскости. Малое тело массой m кладут на край выемки и отпускают. Найти скорости тела и подставки, силу, действующую на тело в момент прохождения нижней точки

23. Груз массой m , подвешенный на пружине жесткости k , удерживается подставкой так, что пружина находится в недеформированном состоянии. Подставку внезапно убирают. Найти максимальное удлинение пружины и максимальную скорость груза.

24. От груза, подвешенного на пружине жесткости k , отрывается часть массой m . На какую высоту поднимется после этого оставшаяся часть груза?

25. C какой силой надо надавить на верхний груз массой m , чтобы нижний груз массой M , соединенный с верхним пружиной жесткости k , оторвался от пола после прекращения действия силы?

26. На горизонтальной плоскости лежат два тела массами m 1 и m 2 , соединённых недеформированной пружиной. Найти, какую наименьшую постоянную силу нужно приложить к левому телу, чтобы сдвинулось правое. Коэффициент трения тел о плоскость .

Просмотр: эта статья прочитана 48362 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Два случая преобразования механического движения материальной точки или системы точек:

  1. механическое движение переносится с одной механической системы на другую в качестве механического движения;
  2. механическое движение превращается в другую форму движения материи (в форму потенциальной энергии, теплоту, электричество и т.д.).

Когда рассматривается преобразование механического движения без перехода его в другую форму движения, мерой механического движения является вектор количества движения материальной точки или механической системы. Мерой действия силы в этом случае является вектор импульса силы.

Когда механическое движение превращается в другую форму движения материи, в качестве меры механического движения выступает кинетическая энергия материальной точки или механической системы. Мерой действия силы при превращении механического движения в другую форму движения является работа силы

Кинетическая энергия

Кинетическая энергия это способность тела преодолевать препятствование во время движения.

Кинетическая энергия материальной точки

Кинетической энергией материальной точки называется скалярная величина, которая равняется половине произведения массы точки на квадрат ее скорости.

Кинетическая энергия:

  • характеризует и поступательное, и вращательное движения;
  • не зависит от направления движения точек системы и не характеризует изменение этих направлений;
  • характеризует действие и внутренних, и внешних сил.

Кинетическая энергия механической системы

Кинетическая энергия системы равняется сумме кинетических энергий тел системы. Кинетическая энергия зависит от вида движения тел системы.

Определение кинетической энергии твердого тела при разных видах движения движениях.

Кинетическая энергия поступательного движения
При поступательном движении кинетическая энергия тела равна Т =m V 2 /2.

Мерой инертности тела при поступательном движении является масса.

Кинетическая энергия вращательного движения тела

При вращательном движении тела кинетическая энергия равняется половине произведения момента инерции тела относительно оси вращения и квадрата его угловой скорости.

Мерой инертности тела при вращательном движении является момент инерции.

Кинетическая энергия тела не зависит от направления вращения тела.

Кинетическая энергия плоскопаралельного движения тела

При плоскопаралельном движении тела кинетическая энергия равна

Работа силы

Работа силы характеризует действие силы на тело при некотором перемещении и определяет изменение модуля скорости подвижной точки.

Элементарная работа силы

Элементарная работа силы определяется как скалярная величина, равная произведению проекции силы на касательную к траектории, направленную в направлении движения точки, и бесконечно малого перемещения точки, направленного вдоль этой касательной.

Работа силы на конечном перемещении

Работа силы на конечном перемещении равна сумме ее работ на элементарных участках.

Работа силы на конечном перемещении М 1 М 0 равняется интегралу вдоль этого перемещения от элементарной работы.

Работа силы на перемещении М 1 М 2 изображается площадью фигуры, ограниченной осью абсцисс, кривой и ординатами, соответствующими точкам М 1 и М 0 .

Единица измерения работы силы и кинетической энергии в системе СИ 1 (Дж).

Теоремы о работе силы

Теорема 1 . Работа равнодействующей силы на некотором перемещении равна алгебраической сумме работ составляющих сил на том же перемещении.

Теорема 2. Работа постоянной силы на результирующем перемещении равна алгебраической сумме работ этой силы на составляющих перемещениях.

Мощность

Мощность - это величина, которая определяет работу силы за единицу времени.

Единицей измерения мощности есть 1Вт = 1 Дж/с.

Случаи определения работы сил

Работа внутренних сил

Сумма работ внутренних сил твердого тела на любом его перемещении равна нулю.

Работа силы тяжести

Работа силы упругости

Работа силы трения

Работа сил, приложенных к вращающемуся телу

Элементарная работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси, равна произведению главного момента внешних сил относительно оси вращения на приращение угла поворота.

Сопротивление качению

В зоне контакта неподвижого цилиндра и плоскости возникает местная деформация контактного сжатия, напряжение распределяются по эллиптическому закону и линия действия равнодействующей N этих напряжений совпадает с линией действия силы нагрузки на цилиндр Q. При перекатывании цилиндра распределение нагрузки становится несимметричным с максимумом, смещенным в сторону движения. Равнодействующая N смещается на величину k - плечо силы трения качения, которая еще назвается коэффициентом трения качения и имеет размерность длины (см)

Теорема об изменении кинетической энергии материальной точки

Изменение кинетической энергии материальной точки на некотором ее перемещении равняется алгебраической сумме робот всех действующих на точку сил на том же перемещении.

Теорема об изменении кинетической энергии механической системы

Изменение кинетической энергии механической системы на некотором перемещении равняется алгебраической сумме робот внутренних и внешних сил, действующих на материальные точки системы на том же перемещении.

Теорема об изменении кинетической энергии твердого тела

Изменение кинетической энергии твердого тела (неизменной системы) на некотором перемещении равняется сумме робот внешних сил, действующих на точки системы на том же перемещении.

КПД

Силы, действующие в механизмах

Силы и пары сил (моменты), которые приложены к механизму или машине, можно разделить на группы:

1.Движущие силы и моменты, совершающие положительную работу (приложенные к ведущим звеньям, например, давление газа на поршень в ДВС).

2. Силы и моменты сопротивления, совершающие отрицательную работу:

  • полезного сопротивления (совершают требуемую от машины работу и приложены к ведомым звеньям, например сопротивление поднимаемого машиной груза),
  • силы сопротивления (например, силы трения, сопротивление воздуха и т.п.).

3. Силы тяжести и силы упругости пружин (как положительная, так и отрицательная работа, при этом работа за полный цикл равна нулю).

4. Силы и моменты, приложенные к корпусу или стойке извне (реакция фундамента и т.п.), которые не совершают работу.

5. Силы взаимодействия между звеньями, действующие в кинематических парах.

6. Силы инерции звеньев, обусловленные массой и движением звеньев с ускорением, могут осуществлять положительную, отрицательную работу и не совершать работы.

Работа сил в механизмах

При установившемся режиме работы машины ее кинетическая энергия не изменяется и сумма работ приложенных к ней движущих сил и сил сопротивления равна нулю.

Работа, затрачиваемая на приведение машины в движение, расходуется на преодоление полезных и вредных сопротивлений.

КПД механизмов

Механический коэффициент полезного действия при установившемся движении равен отношению полезной работы машины к работе, затраченной на приведение машины в движение:

Элементы машины могут соединяться последовательно, параллельно и смешанно.

КПД при последовательном соединении

При последовательном соединении механизмов общий КПД меньше с наименьшего КПД отдельного механизма.

КПД при параллельном соединении

При параллельном соединении механизмов общий КПД больше наименьшего и меньше наибольшего КПД отдельного механизма.

Формат: pdf

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы

Энергией называется скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.

Для характеристики различных форм движения материи вводятся соответствующие виды энергии, например: механическая, внутренняя, энергия электростатических, внутриядерных взаимодействий и др.

Энергия подчиняется закону сохранения, который является одним из важнейших законов природы.

Механическая энергия Е характеризует движение и взаимодействие тел и является функцией скоростей и взаимного расположения тел. Она равна сумме кинетической и потенциальной энергий.

Кинетическая энергия

Рассмотрим случай, когда на тело массой m действует постоянная сила \(~\vec F\) (она может быть равнодействующей нескольких сил) и векторы силы \(~\vec F\) и перемещения \(~\vec s\) направлены вдоль одной прямой в одну сторону. В этом случае работу силы можно определить как A = F s . Модуль силы по второму закону Ньютона равен F = m∙a , а модуль перемещения s при равноускоренном прямолинейном движении связан с модулями начальной υ 1 и конечной υ 2 скорости и ускорения а выражением \(~s = \frac{\upsilon^2_2 - \upsilon^2_1}{2a}\) .

Отсюда для работы получаем

\(~A = F \cdot s = m \cdot a \cdot \frac{\upsilon^2_2 - \upsilon^2_1}{2a} = \frac{m \cdot \upsilon^2_2}{2} - \frac{m \cdot \upsilon^2_1}{2}\) . (1)

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела .

Кинетическая энергия обозначается буквой E k .

\(~E_k = \frac{m \cdot \upsilon^2}{2}\) . (2)

Тогда равенство (1) можно записать в таком виде:

\(~A = E_{k2} - E_{k1}\) . (3)

Теорема о кинетической энергии

работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела.

Так как изменение кинетической энергии равно работе силы (3), кинетическая энергия тела выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой m равна нулю и тело увеличивает свою скорость до значения υ , то работа силы равна конечному значению кинетической энергии тела:

\(~A = E_{k2} - E_{k1}= \frac{m \cdot \upsilon^2}{2} - 0 = \frac{m \cdot \upsilon^2}{2}\) . (4)

Физический смысл кинетической энергии

кинетическая энергия тела, движущегося со скоростью υ, показывает, какую работу должна совершить сила, действующая на покоящееся тело, чтобы сообщить ему эту скорость.

Потенциальная энергия

Потенциальная энергия – это энергия взаимодействия тел.

Потенциальная энергия поднятого над Землей тела – это энергия взаимодействия тела и Земли гравитационными силами. Потенциальная энергия упруго деформированного тела – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Потенциальными называются силы , работа которых зависит только от начального и конечного положения движущейся материальной точки или тела и не зависит от формы траектории.

При замкнутой траектории работа потенциальной силы всегда равна нулю. К потенциальным силам относятся силы тяготения, силы упругости, электростатические силы и некоторые другие.

Силы , работа которых зависит от формы траектории, называются непотенциальными . При перемещении материальной точки или тела по замкнутой траектории работа непотенциальной силы не равна нулю.

Потенциальная энергия взаимодействия тела с Землей

Найдем работу, совершаемую силой тяжести F т при перемещении тела массой m вертикально вниз с высоты h 1 над поверхностью Земли до высоты h 2 (рис. 1). Если разность h 1 – h 2 пренебрежимо мала по сравнению с расстоянием до центра Земли, то силу тяжести F т во время движения тела можно считать постоянной и равной mg .

Так как перемещение совпадает по направлению с вектором силы тяжести, работа силы тяжести равна

\(~A = F \cdot s = m \cdot g \cdot (h_1 - h_2)\) . (5)

Рассмотрим теперь движение тела по наклонной плоскости. При перемещении тела вниз по наклонной плоскости (рис. 2) сила тяжести F т = m∙g совершает работу

\(~A = m \cdot g \cdot s \cdot \cos \alpha = m \cdot g \cdot h\) , (6)

где h – высота наклонной плоскости, s – модуль перемещения, равный длине наклонной плоскости.

Движение тела из точки В в точку С по любой траектории (рис. 3) можно мысленно представить состоящим из перемещений по участкам наклонных плоскостей с различными высотами h ’, h ’’ и т. д. Работа А силы тяжести на всем пути из В в С равна сумме работ на отдельных участках пути:

\(~A = m \cdot g \cdot h" + m \cdot g \cdot h"" + \ldots + m \cdot g \cdot h^n = m \cdot g \cdot (h" + h"" + \ldots + h^n) = m \cdot g \cdot (h_1 - h_2)\) , (7)

где h 1 и h 2 – высоты от поверхности Земли, на которых расположены соответственно точки В и С .

Равенство (7) показывает, что работа силы тяжести не зависит от траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях.

При движении вниз работа силы тяжести положительна, при движении вверх – отрицательна. Работа силы тяжести на замкнутой траектории равна нулю.

Равенство (7) можно представить в таком виде:

\(~A = - (m \cdot g \cdot h_2 - m \cdot g \cdot h_1)\) . (8)

Физическую величину, равную произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли.

Работа силы тяжести при перемещении тела массой m из точки, расположенной на высоте h 2 , в точку, расположенную на высоте h 1 от поверхности Земли, по любой траектории равна изменению потенциальной энергии взаимодействия тела и Земли, взятому с противоположным знаком.

\(~A = - (E_{p2} - E_{p1})\) . (9)

Потенциальная энергия обозначается буквой Е p .

Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, т. е. высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

При таком выборе нулевого уровня потенциальная энергия Е p тела, находящегося на высоте h над поверхностью Земли, равна произведению массы m тела на модуль ускорения свободного падения g и расстояние h его от поверхности Земли:

\(~E_p = m \cdot g \cdot h\) . (10)

Физический смысл потенциальной энергии взаимодействия тела с Землей

потенциальная энергия тела, на которое действует сила тяжести, равна работе, совершаемой силой тяжести при перемещении тела на нулевой уровень.

В отличие от кинетической энергии поступательного движения, которая может иметь лишь положительные значения, потенциальная энергия тела может быть как положительной, так и отрицательной. Тело массой m , находящееся на высоте h , где h < h 0 (h 0 – нулевая высота), обладает отрицательной потенциальной энергией:

\(~E_p = -m \cdot g \cdot h\) .

Потенциальная энергия гравитационного взаимодействия

Потенциальная энергия гравитационного взаимодействия системы двух материальных точек с массами m и М , находящихся на расстоянии r одна от другой, равна

\(~E_p = G \cdot \frac{M \cdot m}{r}\) . (11)

где G – гравитационная постоянная, а нуль отсчета потенциальной энергии (Е p = 0) принят при r = ∞.

Потенциальная энергия гравитационного взаимодействия тела массой m с Землей, где h – высота тела над поверхностью Земли, M e – масса Земли, R e – радиус Земли, а нуль отсчета потенциальной энергии выбран при h = 0.

\(~E_e = G \cdot \frac{M_e \cdot m \cdot h}{R_e \cdot (R_e +h)}\) . (12)

При том же условии выбора нуля отсчета потенциальная энергия гравитационного взаимодействия тела массой m с Землей для малых высот h (h « R e) равна

\(~E_p = m \cdot g \cdot h\) ,

где \(~g = G \cdot \frac{M_e}{R^2_e}\) – модуль ускорения свободного падения вблизи поверхности Земли.

Потенциальная энергия упруго деформированного тела

Вычислим работу, совершаемую силой упругости при изменении деформации (удлинения) пружины от некоторого начального значения x 1 до конечного значения x 2 (рис. 4, б, в).

Сила упругости изменяется в процессе деформации пружины. Для нахождения работы силы упругости можно взять среднее значение модуля силы (т.к. сила упругости линейно зависит от x ) и умножить на модуль перемещения:

\(~A = F_{upr-cp} \cdot (x_1 - x_2)\) , (13)

где \(~F_{upr-cp} = k \cdot \frac{x_1 - x_2}{2}\) . Отсюда

\(~A = k \cdot \frac{x_1 - x_2}{2} \cdot (x_1 - x_2) = k \cdot \frac{x^2_1 - x^2_2}{2}\) или \(~A = -\left(\frac{k \cdot x^2_2}{2} - \frac{k \cdot x^2_1}{2} \right)\) . (14)

Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

\(~E_p = \frac{k \cdot x^2}{2}\) . (15)

Из формул (14) и (15) следует, что работа силы упругости равна изменению потенциальной энергии упруго деформированного тела, взятому с противоположным знаком:

\(~A = -(E_{p2} - E_{p1})\) . (16)

Если x 2 = 0 и x 1 = х , то, как видно из формул (14) и (15),

\(~E_p = A\) .

Физический смысл потенциальной энергии деформированного тела

потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Потенциальная энергия характеризует взаимодействующие тела, а кинетическая энергия – движущиеся тела. И потенциальная, и кинетическая энергия изменяются только в результате такого взаимодействия тел, при котором действующие на тела силы совершают работу, отличную от нуля. Рассмотрим вопрос об изменениях энергии при взаимодействиях тел, образующих замкнутую систему.

Замкнутая система – это система, на которую не действуют внешние силы или действие этих сил скомпенсировано . Если несколько тел взаимодействуют между собой только силами тяготения и силами упругости и никакие внешние силы на них не действуют, то при любых взаимодействиях тел работа сил упругости или сил тяготения равна изменению потенциальной энергии тел, взятому с противоположным знаком:

\(~A = -(E_{p2} - E_{p1})\) . (17)

По теореме о кинетической энергии, работа тех же сил равна изменению кинетической энергии:

\(~A = E_{k2} - E_{k1}\) . (18)

Из сравнения равенств (17) и (18) видно, что изменение кинетической энергии тел в замкнутой системе равно по абсолютному значению изменению потенциальной энергии системы тел и противоположно ему по знаку:

\(~E_{k2} - E_{k1} = -(E_{p2} - E_{p1})\) или \(~E_{k1} + E_{p1} = E_{k2} + E_{p2}\) . (19)

Закон сохранения энергии в механических процессах :

сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и си-лами упругости, остается постоянной.

Сумма кинетической и потенциальной энергии тел называется полной механической энергией .

Приведем простейший опыт. Подбросим вверх стальной шарик. Сообщив начальную скорость υ нач, мы придадим ему кинетическую энергию, из-за чего он начнет подниматься вверх. Действие силы тяжести приводит к уменьшению скорости шарика, а значит, и его кинетической энергии. Но шарик поднимается выше и выше и приобретает все больше и больше потенциальной энергии (Е p = m∙g∙h ). Таким образом, кинетическая энергия не исчезает бесследно, а происходит ее превращение в потенциальную энергию.

В момент достижения верхней точки траектории (υ = 0) шарик полностью лишается кинетической энергии (Е k = 0), но при этом его потенциальная энергия становится максимальной. Дальше шарик меняет направление движения и с увеличивающейся скоростью движется вниз. Теперь происходит обратное превращение потенциальной энергии в кинетическую.

Закон сохранения энергии раскрывает физический смысл понятия работы :

работа сил тяготения и сил упругости, с одной стороны, равна увеличению кинетической энергии, а с другой стороны, – уменьшению потенциальной энергии тел. Следовательно, работа равна энергии, превратившейся из одного вида в другой.

Закон об изменении механической энергии

Если система взаимодействующих тел не замкнута, то ее механическая энергия не сохраняется. Изменение механической энергии такой системы равно работе внешних сил:

\(~A_{vn} = \Delta E = E - E_0\) . (20)

где Е и Е 0 – полные механические энергии системы в конечном и начальном состояниях соответственно.

Примером такой системы может служить система, в которой наряду с потенциальными силами действуют непотенциальные силы. К непотенциальным силам относятся силы трения. В большинстве случаев, когда угол между силой трения F r тела составляет π радиан, работа силы трения отрицательна и равна

\(~A_{tr} = -F_{tr} \cdot s_{12}\) ,

где s 12 – путь тела между точками 1 и 2.

Силы трения при движении системы уменьшают ее кинетическую энергию. В результате этого механическая энергия замкнутой неконсервативной системы всегда уменьшается, переходя в энергию немеханических форм движения.

Например, автомобиль, двигавшийся по горизонтальному участку дороги, после выключения двигателя проходит некоторый путь и под действием сил трения останавливается. Кинетическая энергия поступательного движения автомобиля стала равной нулю, а потенциальная энергия не увеличилась. Во время торможения автомобиля произошло нагревание тормозных колодок, шин автомобиля и асфальта. Следовательно, в результате действия сил трения кинетическая энергия автомобиля не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

Закон сохранения и превращения энергии

при любых физических взаимодействиях энергия превращается из одной формы в другую.

Иногда угол между силой трения F tr и элементарным перемещением Δr равен нулю и работа силы трения положительна:

\(~A_{tr} = F_{tr} \cdot s_{12}\) ,

Пример 1 . Пусть, внешняя сила F действует на брусок В , который может скользить по тележке D (рис. 5). Если тележка перемещается вправо, то работа силы трения скольжения F tr2 , действующей на тележку со стороны бруска, положительна:

Пример 2 . При качении колеса его сила трения качения направлена вдоль движения, так как точка соприкосновения колеса с горизонтальной поверхностью двигается в направлении, противоположном направлению движения колеса, и работа силы трения положительна (рис. 6):

Литература

  1. Кабардин О.Ф. Физика: Справ. материалы: Учеб. пособие для учащихся. – М.: Просвещение, 1991. – 367 с.
  2. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Про-свещение, 1992. – 191 с.
  3. Элементарный учебник физики: Учеб. пособие. В 3 т. / Под ред. Г.С. Ландсберга: т. 1. Механика. Теплота. Молекулярная физика. – М.: Физматлит, 2004. – 608 с.
  4. Яворский Б.М., Селезнев Ю.А. Справочное руководство по физике для поступающих в вузы и самообразования. – М.: Наука, 1983. – 383 с.